О когенерации, малой энергетике и строительстве тепловых электростанций
Бальтасар Грасиан

Правило разумных - идти против правил, когда иначе не завершить начатое.

Бальтасар Грасиан

                        
КлиентамСпециалистам в энергетикеОрганам властиИнвесторам и финансистамЖурналистам и студентам

Поиск по порталу

Персональное

АВТОРИЗАЦИЯ

Логин (Регистрация)

Пароль (Забыли?)


Вопрос специалисту

+7 (495) 6-496-796

info@cogeneration.ru




Основы и преимущества малой энергетики и когенерации

Техническая реализация мини-ТЭЦ

1. Техническая реализация мини-ТЭЦ

2. Поршневой двигатель

3. Паровая турбина

4. Газовая турбина

5. Двигатель Стирлинга

6. Микротурбины

7. Топливные элементы

8. Парогазовые установки

9. Сравнение газопоршневых и газотурбинных установок

10. Сравнение газопоршневого двигателя и паровой турбины

11. Сравнение газопоршневых и дизельных установок

12. Тепловые насосы



9. Сравнение газопоршневых и газотурбинных установок

Для мощностей до 20-30 МВт*э газопоршневые когенерационные установки показывают себя лучше всех других технологий, представленных на сайте. Причем в диапазоне от 3 кВт*э до 5 МВт*э они просто вне конкуренции. Почему?

Во-первых, высокий электрический КПД.

Наивысший электрический КПД - до 30 % у газовой турбины, и около 40 % у газопоршневого двигателя достигается при работе под 100%-ной нагрузкой (Рис. 2.1). При снижении нагрузки до 50%, электрический КПД газовой турбины снижается почти в 3 раза. Для газопоршневого двигателя такое же изменение режима нагрузки практически не влияет как на общий, так и на электрический КПД.

Pиc. 1. Графики зависимости КПД от нагрузки:

Газопоршневой двигатель - КПД Газовая турбина

Графики наглядно показывают — газовые двигатели имеют высокий электрический КПД, который практически не изменяется в диапазоне нагрузки 50 — 100 %.

Во-вторых, условия размещения.

Номинальный выход мощности, как газопоршневого двигателя, так и газовой турбины зависит от высоты площадки над уровнем моря и температуры окружающего воздуха.

На графике (рис. 2) видно, что при повышении температуры от -30°С до +30°С электрический КПД у газовой турбины падает на 15-20%. При температурах выше +30°С, КПД газовой турбины — еще ниже. В отличие от газовой турбины газопоршневой двигатель имеет более высокий и постоянный электрический КПД во всем интервале температур и постоянный КПД, вплоть до +25°С.

Рис. 2. График зависимости электрического КПД газовой турбины от температуры окружающего воздуха

Газовый двигатель и газовая турбина. КПД

В-третьих, условия работы.

Количество пусков: газопоршневой двигатель может запускаться и останавливаться неограниченное число раз, что не влияет на общий моторесурс двигателя. 100 пусков газовой турбины уменьшают её ресурс на 500 часов.

Время запуска: время до принятия нагрузки после старта составляет у газовой турбины 15-17 минут, у газопоршневого двигателя 2-3 минуты.

В-четвертых, проектный срок службы, интервалы техобслуживания.

Ресурс до капитального ремонта составляет у газовой турбины 20 000 — 30 000 рабочих часов, у газопоршневого двигателя этот показатель равен 60000 рабочих часов (табл. 1). Стоимость капитального ремонта газовой турбины с учётом затрат на запчасти и материалы значительно выше.

Полный капитальный ремонт газовой турбины - более сложная работа, чем капремонт газового двигателя. Ремонт газовой турбины выполняется только на предприятии-изготовителе. Кроме того, при ремонте газовой турбины используются очень дорогие запчасти, что делает его стоимость очень высокой. Поэтому время простоя газового двигателя по сравнению с газовой турбиной сокращено. Затраты на запчасти и материалы для капремонта газового двигателя также ниже.

Таблица №1: Интервалы техобслуживания

Ремонтные работы, интервал (часы) Турбины, авиационные и малые промышленные Турбины, промышленные Газопоршневой двигатель
Ремонт камеры сгорания 5 000 10 000
Средний ремонт Ремонт турбины и камеры сгорания Ремонт головок цилиндров
10 000 15 000 30 000
Полный капитальный ремонт 20 000 30 000 60 000

 

В-пятых, относительно низкие капиталовложения.

Как показывают расчёты, удельное капиталовложение (Евро/кВт) в производство электрической и тепловой энергии газопоршневыми двигателями ниже. Это преимущество газопоршневых двигателей неоспоримо для мощностей до 30 МВт. ТЭЦ мощностью 10 МВт на основе газопоршневых двигателей требует вложений около 7,5 миллионов €, при использовании газовой турбины затраты возрастают до 9,5 миллионов € (рис. 3).

Давление газа в сети для газового двигателя не превышает 4-х атмосфер, давление подачи газа для газовой турбины должно быть минимум 6…10 атмосфер. Таким образом, при использовании на станции в качестве силового агрегата газовой турбины, необходима установка газовой компрессорной станции, что еще больше увеличивает капиталовложения.

Рис. 3. Объемы капитальных вложений в ТЭЦ с разными силовыми агрегатами.

Газовый двигатель и газовая турбина. Стоимость


1. Техническая реализация мини-ТЭЦ

2. Поршневой двигатель

3. Паровая турбина

4. Газовая турбина

5. Двигатель Стирлинга

6. Микротурбины

7. Топливные элементы

8. Парогазовые установки

9. Сравнение газопоршневых и газотурбинных установок

10. Сравнение газопоршневого двигателя и паровой турбины

11. Сравнение газопоршневых и дизельных установок

12. Тепловые насосы


Справочно-консультационный центрРазмещение рекламыКонтактная информация Rambler's Top100
При полном или частичном использовании материалов ссылка на Cogeneration.ru обязательна.
Редакция не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях.